Source code for ax.core.observation

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
from copy import deepcopy
from typing import List, Optional, Tuple

import numpy as np
import pandas as pd
from ax.core.arm import Arm
from ax.core.base import Base
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.types import TParameterization


[docs]class ObservationFeatures(Base): """The features of an observation. These include both the arm parameters and the features of the observation found in the Data object: trial index, times, and random split. This object is meant to contain everything needed to represent this observation in a model feature space. It is essentially a row of Data joined with the arm parameters. An ObservationFeatures object would typically have a corresponding ObservationData object that provides the observed outcomes. Attributes: parameters: arm parameters trial_index: trial index start_time: batch start time end_time: batch end time random_split: random split """ def __init__( self, parameters: TParameterization, trial_index: Optional[np.int64] = None, # pyre-fixme[11]: Annotation `Timestamp` is not defined as a type. start_time: Optional[pd.Timestamp] = None, # pyre-fixme[11]: Annotation `Timestamp` is not defined as a type. end_time: Optional[pd.Timestamp] = None, random_split: Optional[np.int64] = None, ) -> None: self.parameters = parameters self.trial_index = trial_index self.start_time = start_time self.end_time = end_time self.random_split = random_split
[docs] @staticmethod def from_arm( arm: Arm, trial_index: Optional[np.int64] = None, # pyre-fixme[11]: Annotation `Timestamp` is not defined as a type. start_time: Optional[pd.Timestamp] = None, # pyre-fixme[11]: Annotation `Timestamp` is not defined as a type. end_time: Optional[pd.Timestamp] = None, random_split: Optional[np.int64] = None, ) -> "ObservationFeatures": """Convert a Arm to an ObservationFeatures, including additional data as specified. """ return ObservationFeatures( parameters=arm.parameters, trial_index=trial_index, start_time=start_time, end_time=end_time, random_split=random_split, )
[docs] def update_features( self, new_features: "ObservationFeatures" ) -> "ObservationFeatures": """Updates the existing ObservationFeatures with the fields of the the input. Adds all of the new parameters to the existing parameters and overwrites any other fields that are not None on the new input features.""" self.parameters.update(new_features.parameters) if new_features.trial_index is not None: self.trial_index = new_features.trial_index if new_features.start_time is not None: self.start_time = new_features.start_time if new_features.end_time is not None: self.end_time = new_features.end_time if new_features.random_split is not None: self.random_split = new_features.random_split return self
def __repr__(self) -> str: strs = [] for attr in ["trial_index", "start_time", "end_time", "random_split"]: if getattr(self, attr) is not None: strs.append(", {attr}={val}".format(attr=attr, val=getattr(self, attr))) repr_str = "ObservationFeatures(parameters={parameters}".format( parameters=self.parameters ) repr_str += "".join(strs) + ")" return repr_str def __hash__(self) -> int: parameters = self.parameters.copy() for k, v in parameters.items(): if type(v) is np.int64: parameters[k] = int(v) # pragma: no cover elif type(v) is np.float32: parameters[k] = float(v) # pragma: no cover return hash( ( json.dumps(parameters, sort_keys=True), self.trial_index, self.start_time, self.end_time, self.random_split, ) )
[docs]class ObservationData(Base): """Outcomes observed at a point. The "point" corresponding to this ObservationData would be an ObservationFeatures object. Attributes: metric_names: A list of k metric names that were observed means: a k-array of observed means covariance: a (k x k) array of observed covariances """ def __init__( self, metric_names: List[str], means: np.ndarray, covariance: np.ndarray ) -> None: k = len(metric_names) if means.shape != (k,): raise ValueError( "Shape of means should be {}, is {}.".format((k,), (means.shape)) ) if covariance.shape != (k, k): raise ValueError( "Shape of covariance should be {}, is {}.".format( (k, k), (covariance.shape) ) ) self.metric_names = metric_names self.means = means self.covariance = covariance def __repr__(self) -> str: return "ObservationData(metric_names={mn}, means={m}, covariance={c})".format( mn=self.metric_names, m=self.means, c=self.covariance )
[docs]class Observation(Base): """Represents an observation. A set of features (ObservationFeatures) and corresponding measurements (ObservationData). Optionally, a arm name associated with the features. Attributes: features (ObservationFeatures) data (ObservationData) arm_name (Optional[str]) """ def __init__( self, features: ObservationFeatures, data: ObservationData, arm_name: Optional[str] = None, ) -> None: self.features = features self.data = data self.arm_name = arm_name
[docs]def observations_from_data(experiment: Experiment, data: Data) -> List[Observation]: """Convert Data to observations. Converts a Data object to a list of Observation objects. Pulls arm parameters from experiment. Overrides fidelity parameters in the arm with those found in the Data object. Uses a diagonal covariance matrix across metric_names. Args: experiment: Experiment with arm parameters. data: Data of observations Returns: List of Observation objects. """ feature_cols = list( { "arm_name", "trial_index", "start_time", "end_time", "random_split", "fidelities", }.intersection(data.df.columns) ) observations = [] for g, d in data.df.groupby(by=feature_cols): # If g were a single value, zip would transform it into an index, # and we want the value. if not isinstance(g, (list, tuple)): g = [g] # pragma: no cover features = dict(zip(feature_cols, g)) obs_kwargs = {} obs_parameters = experiment.arms_by_name[features["arm_name"]].parameters.copy() if obs_parameters: obs_kwargs["parameters"] = obs_parameters for f in ["trial_index", "start_time", "end_time", "random_split"]: obs_kwargs[f] = features.get(f, None) if "fidelities" in features: fidelity_dict = json.loads(features["fidelities"]) for param_name, val in fidelity_dict.items(): obs_parameters[param_name] = val observations.append( Observation( features=ObservationFeatures(**obs_kwargs), data=ObservationData( metric_names=list(d["metric_name"].values), means=d["mean"].values, covariance=np.diag(d["sem"].values ** 2), ), arm_name=features["arm_name"], ) ) return observations
[docs]def separate_observations( observations: List[Observation], copy: bool = False ) -> Tuple[List[ObservationFeatures], List[ObservationData]]: """Split out observations into features+data. Args: observations: input observations Returns: observation_features: ObservationFeatures observation_data: ObservationData """ if copy: observation_features = [deepcopy(obs.features) for obs in observations] observation_data = [deepcopy(obs.data) for obs in observations] else: observation_features = [obs.features for obs in observations] observation_data = [obs.data for obs in observations] return observation_features, observation_data